منابع مشابه
Local higher derivations on C*-algebras are higher derivations
Let $mathfrak{A}$ be a Banach algebra. We say that a sequence ${D_n}_{n=0}^infty$ of continuous operators form $mathfrak{A}$ into $mathfrak{A}$ is a textit{local higher derivation} if to each $ainmathfrak{A}$ there corresponds a continuous higher derivation ${d_{a,n}}_{n=0}^infty$ such that $D_n(a)=d_{a,n}(a)$ for each non-negative integer $n$. We show that if $mathfrak{A}$ is a $C^*$-algebra t...
متن کاملInner Derivations of Non-associative Algebras
In this note we propose a definition of inner derivation for nonassociative algebras. This definition coincides with the usual one for Lie algebras, and for associative algebras with no absolute right (left) divisor of zero. I t is well known that all derivations of semi-simple associative or Lie algebras over a field of characteristic zero are inner. Recent correspondence with N. Jacobson has ...
متن کاملInner Derivations on Ultraprime Normed Algebras
We show that, for every ultraprime Banach algebra A, there exists a positive number γ satisfying γ‖a+Z(A)‖ ≤ ‖Da‖ for all a in A, where Z(A) denotes the centre of A and Da denotes the inner derivation on A induced by a. Moreover, the number γ depends only on the “constant of ultraprimeness” of A.
متن کاملDerivations of Homotopy Algebras
We recall the definition of strong homotopy derivations of A∞ algebras and introduce the corresponding definition for L∞ algebras. We define strong homotopy inner derivations for both algebras and exhibit explicit examples of both.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1974
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1974.53.555